November 2024 SOCRA Source Journal - Journal - Page 21
SELF STUDY ANSWER KEY
Informed Consent
Guidance for IRBs, Clinical Investigators, and Sponsors
ANSWERS
6.
a. True (Section A)
1.
b. False (Section C)
7.
c. Investigator (Section A.1)
2.
a. True (Section A)
8.
e. Only a. and c. (Section C.1)
3.
c. Rights, welfare, and safety (Section A)
9.
4.
b. False (Section B)
c. Education, training, and experience
(Section A.1)
5.
d. all the above (Section A.2)
10. a. True (Section B.1)
References (continued)
Weissler, E. H., Naumann, T., Andersson, T., Ranganath, R., Elemento, O., Luo, Y., ... & Ghassemi,
M. (2021). The role of machine learning in clinical research: transforming the future of evidence
generation. Trials, 22(1), 1-15. https://doi.org/10.1186/S13063-021-05489-X.
Ye, M., Tong, L., Zheng, X., Wang, H., Zhou, H., Zhu, X., ... & Bai, C. (2022). A classi昀椀er for improving
early lung cancer diagnosis incorporating arti昀椀cial intelligence and liquid biopsy. Frontiers in
Oncology, 12, 853801. https://doi.org/10.3389/fonc.2022.853801.
Zhang, K., & Demner-Fushman, D. (2017). Automated classi昀椀cation of eligibility criteria in clinical
trials to facilitate patient-trial matching for speci昀椀c patient populations. Journal of the American
Medical Informatics Association, 24(4), 781-787. https://doi.org/10.1093/JAMIA/OCW176.
Zhavoronkov, A., Vanhaelen, Q., & Oprea, T. I. (2020). Will arti昀椀cial intelligence for drug discovery
impact clinical pharmacology?. Clinical Pharmacology & Therapeutics, 107(4), 780-785.
doi:https://doi.org/10.1002/CPT.1795.
Zhou, N., & Manser, P. (2020). Does including machine learning predictions in ALS clinical trial
analysis improve statistical power?. Annals of Clinical and Translational Neurology, 7(10), 17561765. https://doi.org/10.1002/ACN3.51140.
SOCRA SOURCE © November 2024
21