November 2024 SOCRA Source Journal - Journal - Page 19
References (continued)
Hussein, M., González-Bueno Puyal, J., Lines, D., Sehgal, V., Toth, D., Ahmad, O. F., ... & Haidry, R.
(2022). A new arti昀椀cial intelligence system successfully detects and localises early neoplasia in Barrett’s
esophagus by using convolutional neural networks. United European Gastroenterology Journal, 10(6),
528-537. https://doi.org/10.1002/ueg2.12233.
Ismail, A., Al-Zoubi, T., El Naqa, I., & Saeed, H. (2023). The role of arti昀椀cial intelligence in hastening
time to recruitment in clinical trials. BJR| Open, 4, 20220023. https://doi.org/10.1259/bjro.20220023.
Kang, T., Zhang, S., Tang, Y., Hruby, G. W., Rusanov, A., Elhadad, N., & Weng, C. (2017). EliIE: An
open-source information extraction system for clinical trial eligibility criteria. Journal of the American
Medical Informatics Association, 24(6), 1062-1071. https://doi.org/10.1093/JAMIA/OCX019.
Koesmahargyo, V., Abbas, A., Zhang, L., Guan, L., Feng, S., Yadav, V., & Galatzer-Levy, I. R. (2020).
Accuracy of machine learning-based prediction of medication adherence in clinical research.
Psychiatry research, 294, 113558. doi:https://doi.org/10.1016/J.PSYCHRES.2020.113558.
Kolla, L., Gruber, F. K., Khalid, O., Hill, C., & Parikh, R. B. (2021). The case for AI-driven cancer clinical
trials–The ef昀椀cacy arm in silico. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1876(1),
188572. https://doi.org/10.1016/J.BBCAN.2021.188572.
Kosan, E., Krois, J., Wingenfeld, K., Deuter, C. E., Gaudin, R., & Schwendicke, F. (2022). Patients’
perspectives on arti昀椀cial intelligence in dentistry: a controlled study. Journal of Clinical Medicine,
11(8), 2143. https://doi.org/10.3390/jcm11082143.
Krittanawong, C., Johnson, K. W., & Tang, W. W. (2019). How arti昀椀cial intelligence could rede昀椀ne
clinical trials in cardiovascular medicine: lessons learned from oncology. Personalized Medicine, 16(2),
87-92. https://doi.org/10.2217/PME-2018-0130.
Langbaum, J. B., Zissimopoulos, J., Au, R., Bose, N., Edgar, C. J., Ehrenberg, E., ... & Aisen, P. S.
(2023). Recommendations to address key recruitment challenges of Alzheimer’s disease clinical trials.
Alzheimer’s & Dementia, 19(2), 696-707. https://doi.org/10.1002/alz.12737.
Lee, C. S., & Lee, A. Y. (2020). How arti昀椀cial intelligence can transform randomized controlled trials.
Translational vision science & technology, 9(2), 9-9. doi:https://doi.org/10.1167/TVST.9.2.9.
Liu, H., Chi, Y., Butler, A., Sun, Y., & Weng, C. (2021). A knowledge base of clinical trial eligibility criteria.
Journal of biomedical informatics, 117, 103771. doi:https://doi.org/10.1016/J.JBI.2021.103771.
Marti-Bonmati, L., Koh, D. M., Riklund, K., Bobowicz, M., Roussakis, Y., Vilanova, J. C., ... & Tsakou, G.
(2022). Considerations for arti昀椀cial intelligence clinical impact in oncologic imaging: an AI4HI position
paper. Insights into Imaging, 13(1), 1-11.
Mayorga-Ruiz, I., Jiménez-Pastor, A., Fos-Guarinos, B., López-González, R., García-Castro, F., &
Alberich-Bayarri, Á. (2019). The role of AI in clinical trials. Arti昀椀cial Intelligence in Medical Imaging:
Opportunities, applications and risks, 231-243. https://doi.org/10.1007/978-3-319-94878-2_16.
SOCRA SOURCE © November 2024
19