November 2024 SOCRA Source Journal - Journal - Page 18
References (continued)
Chen, L., Gu, Y., Ji, X., Lou, C., Sun, Z., Li, H., ... & Huang, Y. (2019). Clinical trial cohort selection
based on multi-level rule-based natural language processing system. Journal of the American
Medical Informatics Association, 26(11), 1218-1226. doi:https://doi.org/10.1093/JAMIA/OCZ109.
Cowan, R. P., Rapoport, A. M., Blythe, J., Rothrock, J., Knievel, K., Peretz, A. M., ... & Woldeamanuel,
Y. W. (2022). Diagnostic accuracy of an arti昀椀cial intelligence online engine in migraine: A multi-center
study. Headache: The Journal of Head and Face Pain, 62(7), 870-882. https://doi.org/10.1111/
head.14324.
Delso, G., Cirillo, D., Kaggie, J. D., Valencia, A., Metser, U., & Veit-Haibach, P. (2021, March). How to
design AI-driven clinical trials in nuclear medicine. In Seminars in nuclear medicine (Vol. 51, No. 2,
pp. 112-119). WB Saunders. https://doi.org/10.1053/J.SEMNUCLMED.2020.09.003.
Dercle, L., McGale, J., Sun, S., Marabelle, A., Yeh, R., Deutsch, E., ... & Schwartz, L. H. (2022).
Arti昀椀cial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy.
Journal for Immunotherapy of Cancer, 10(9). https://doi.org/10.1136%2Fjitc-2022-005292.
Feijoo, F., Palopoli, M., Bernstein, J., Siddiqui, S., & Albright, T. E. (2020). Key indicators of phase
transition for clinical trials through machine learning. Drug Discovery Today, 25(2), 414-421.
https://doi.org/10.1016/J.DRUDIS.2019.12.014.
Fortmeier, V., Lachmann, M., Körber, M. I., Unterhuber, M., von Scheidt, M., Rippen, E., ... & Rudolph,
V. (2022). Solving the pulmonary hypertension paradox in patients with severe tricuspid regurgitation
by employing arti昀椀cial intelligence. Cardiovascular Interventions, 15(4), 381-394.
Getz, K., Smith, Z., Shafner, L., & Hanina, A. (2020). Assessing the scope and predictors of intentional
dose non-adherence in clinical trials. Therapeutic Innovation & Regulatory Science, 54, 1330-1338.
https://doi.org/10.1007/S43441-020-00155-X.
Gligorijevic, J., Gligorijevic, D., Pavlovski, M., Milkovits, E., Glass, L., Grier, K., ... & Obradovic, Z.
(2019). Optimizing clinical trials recruitment via deep learning. Journal of the American Medical
Informatics Association, 26(11), 1195-1202. https://doi.org/10.1093/JAMIA/OCZ064.
Goldstein, B. A., & Rigdon, J. (2019). Using machine learning to identify heterogeneous effects in
randomized clinical trials—moving beyond the forest plot and into the forest. JAMA Network Open,
2(3), e190004-e190004. https://doi.org/10.1001/JAMANETWORKOPEN.2019.0004.
Haddad, T., Helgeson, J. M., Pomerleau, K. E., Preininger, A. M., Roebuck, M. C., Dankwa-Mullan,
I., ... & Goetz, M. P. (2021). Accuracy of an arti昀椀cial intelligence system for cancer clinical trial
eligibility screening: retrospective pilot study. JMIR Medical Informatics, 9(3), e27767. https://doi.
org/10.2196/27767.
Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Arti昀椀cial intelligence for clinical trial design. Trends in
pharmacological sciences, 40(8), 577-591. doi:https://doi.org/10.1016/J.TIPS.2019.05.005.
Hessler, G., & Baringhaus, K. H. (2018). Arti昀椀cial intelligence in drug design. Molecules, 23(10), 2520.
https://doi.org/10.1007/S11427-018-9342-2.
18
SOCRA SOURCE © November 2024